Probabilistic Decision-based Neural Networks for Speech Pattern Classification

نویسندگان

  • K. K. Yiu
  • M. W. Mak
چکیده

Probabilistic decision-based neural networks (PDBNNs) were originally proposed by Lin, Kung and Lin for human face recognition. Although high recognition accuracy has been achieved, not many illustrations were given to highlight the characteristic of the decision boundaries. This paper aims at providing detailed illustrations to compare the decision boundaries of PDBNNs with that of Gaussian mixture models through a pattern recognition task, namely the classiication of two-dimensional vowel data. The original PDBNNs use elliptical basis functions with diagonal covariance matrices, which may be ineecient for modeling feature vectors with correlated components. This paper attempts to tackle this problem by using full covariance matrices. The paper also highlights the strengths of PDBNNs by demonstrating that the PDBNN's thresholding mechanism is very eeective in rejecting data not belonging to any known classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Classification of Single Trial Eeg Signals by a Combined Principal + Independent Component Analysis and Probabilistic Neural Network Approach

In this paper, an attempt is made to classify the EEG signals of letter imagery tasks using a combined independent component analysis and probabilistic neural network. The role of the principal/independent component analysis is to mitigate the effect of EOG artifacts within each single-trial EEG pattern. Experimental results show an overall performance improvement of around in terms of the patt...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

A recurrent log-linearized Gaussian mixture network

Context in time series is one of the most useful and interesting characteristics for machine learning. In some cases, the dynamic characteristic would be the only basis for achieving a possible classification. A novel neural network, which is named "a recurrent log-linearized Gaussian mixture network (R-LLGMN)," is proposed in this paper for classification of time series. The structure of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007